

Welcome to the BIOTOPIA

"We had shifted from a mere ecological crisis into what should instead be called a profound mutation in our relation to the world."

Facing Gaia. Bruno Latour

"Responding to climate change by building hard infrastructures and favouring high-tech homogenous design, we are ignoring millennia-old knowledge of how to live in symbiosis with nature."

Vaclav Havel in LOTEK. Julia Watson

"The inevitability of Total Urbanization must be questioned, and the countryside must be rediscovered as a place to resettle, to stay alive; enthusiastic human presence must reanimate it with new imagination."

Countryside. Rem Koolhaas

"...polluted, bulldozed, machine-dominated, dehumanized, explosion-threatened world that is disintegrating and disappearing before our eyes."

Design with nature. Ian Lennox McHarg

"From a biological perspective, nothing is unnatural..."

"Biology enables, culture forbids."

Sapiens. Yuval Noel Harari

BIOTOPIA

Our aim is to propose a series of design inventions with nature (bioinventions) to compensate for our excessive use of the Earth's resources and restore Nature's balance.

01 Before humankind 02 Act 03 Biocapacity 04 Bioinventions 05 Biocube 06 Biocube distribution 07 Biomatter 08 The Sponge 09 Life in the Sponge Outro

Before humankind

Earth's age 4.6 billion years

What the Earth provides

Rivers and wetlands

Ocean currents

Biomes

Types of terrestrial biomes

Temperate Broadleaf & Mixed Forests

Deserts & Xeric Shrublands

Montane Grasslands & Shrublands

Grasslands, Savannas & Shrublands miexed with Boreal Forest

Tropical and Subtropical Moist Broadleaf Forests

Tropical & Subtropical Coniferous Forests

Mediterranean Forests, Woodlands & Scrub

Tropical & Subtropical Grasslands, Savannas & Shrublands

Flooded Grasslands & Savannas

Boreal Forest/ Tajga

Tundra

Animal habitats

Types of terrestrial biomes

Temperate Broadleaf & Mixed Forests

Deserts & Xeric Shrublands

Montane Grasslands & Shrublands

Grasslands, Savannas & Shrublands miexed with Boreal Forest

Tropical and Subtropical Moist Broadleaf Forests

Tropical & Subtropical Coniferous Forests

Mediterranean Forests, Woodlands & Scrub

Tropical & Subtropical Grasslands, Savannas & Shrublands

Flooded Grasslands & Savannas

Boreal Forest/ Tajga

Tundra

Annual sunny hours

Atmospheric currents

For a long time balance was kept

Natural cycles

Balance

Humam aind

Act

200 000 years of humankind

Big Bang

4.6 billion years

Now

4.6 billion years = 24 hours

200 000 years = 3 seconds

November 15th, 2022

World population

467 × The Netherlands

171 × Spain

122 × France

 $24 \times USA$

 $5.8 \times India$

 $5.6 \times China$

Population density in year 3000 BC

Population density in year 0

Population density in year 1600

Population density today

Land degradation

Deforestation

CO₂ emissions

Use of nonrenewable resources

Plastic waste production

t/year

kg/km²

Plastic waste production

cool water currentswarm water currents

Average temperature in year 1922

Average temperature now

To further illustrate the scale of our impact, we introduce the urgencies

Urgencies

- 1. Use of nonrenewable resources
- 2. Waste
- 3. Environmental pollution
- 4. Access to safe water
- 5. Growing population

Use of nonrenewable resources

Use of nonrenewable resources

Waste

Waste

Environmental pollution

Environmental pollution

Access to safe water

Share of population with access to drinking water facilities, 2020

Access to safe water

Growing population

Global population growth, 1850 - 2022

Growing population

The urgencies illustrate the consequences of the pressure we put on the Earth

Humankind disrupted the balanced cycles

Hard landscape becoming uninhabitable for many organisms

Human-made overproduction causes permanent damage to soil

Overproduction of carbon dioxide is responsible for global warming

Extraction of nonrenewable resources beyond repair

Loss of landscape connectivity

Increase in water surface runoff resulting in drought

Drowning in our own waste

We must stop disruption

And we must do it with nature

But how do we quantify disruption?

To set a brief, we focus on global planetary metrics

Biocapacity

the Earth

Urgencies

Use of nonrenewable resources Amount of energy

Waste Mass of waste

Environmental pollution Mass of CO₂ emissions

Access to safe water Volume of water

Growing population Area of agriculture

Area of infrastructure

Area of buildings

Metrics

Metric	Amount/year
Amount of energy	176 431 000 000 MWh
Mass of waste	2 000 000 000 t
Mass of CO ₂ emissions	5 981 000 000 t
Volume of water	10 894 289 156 627 m ³
Area of agriculture	48 760 000 000 000 m ²
Area of infrastructure	800 000 000 000 m ²
Area of buildings	1 060 000 000 000 m ²

Conversion to m³

Energy

Global amount 2022 (MWh)

m³ of solar panels of 1MWh

Energy (m³)

176 431 000 000

 \times 0.105

= 18 283 000 000

Energy

Global amount 2022 (MWh)

m³ of solar panels of 1MWh

Energy (m³)

176 431 000 000

 \times 0.105

= 18 283 000 000

Energy

Global amount 2022 (MWh)

m³ of solar panels of 1MWh Energy (m³)

176 431 000 000

 \times 0.105

18 283 000 000

0.8 of water volume of Lake Como

Waste

CO₂ emissions

 CO_2 (m³) Global amount 2022 (t) m³ of 1 tonne of CO₂ emission

 \times 1.67

= 9 968 333 333

Water

Global amount 2022 (m³)

m³ of water

Water (m³)

 $10\ 894\ 289\ 156\ 627 \times 1$

= 10 894 289 156 627

484 x water volume of Lake Como

Infrastructure

Global amount 2022 (m²)

3 m of floor height

Infrastructure (m³)

800 000 000 000

 \times 3

= 2 400 000 000 000

107 x water volume of Lake Como

Buildings

Global amount 2022 (m²)

3 m of floor height Buildings (m³)

1 060 000 000 000

 \times 3

= 3 180 000 000 000

141 x water volume of Lake Como

Agriculture

3 m of floor Global amount 2022 (m²) height 48 760 000 000 000 \times 3 119 km 35 km

Agriculture (m³)

= 146 280 000 000 000

6 501 x water volume of Lake Como

Agriculture

Global amount 2022 (m²)

3 m of floor height Agriculture (m³)

48 760 000 000 000

 \times 3

= 146 280 000 000 000

6 501 x water volume of Lake Como

Metric	Amount	year

Amount of energy 176 431 000 000 MWh

Mass of waste 2 000 000 000 t

Mass of CO₂ emissions 5 981 000 000 t

Volume of water 10 894 289 156 627 m³

Area of agriculture 48 760 000 000 000 m²

Area of infrastructure 800 000 000 000 m²

Area of buildings 1 060 000 000 000 m²

Metric	Amount/year	Amount/year
Energy	176 431 000 000 MWh	18 283 000 000 m ³
Waste	2 000 000 000 t	2 266 000 000 m ³
CO ₂ emissions	5 981 000 000 t	9 968 333 333 m ³
Water	10 894 289 156 627 m ³	10 894 289 156 627 m ³
Agriculture	48 760 000 000 000 m ²	146 280 000 000 000 m ³
Infrastructure	800 000 000 000 m ²	2 400 000 000 000 m ³
Area of buildings	1 060 000 000 000 m ²	3 180 000 000 000 m ³

Volume: 162 784.8 km³

But this does not represent our true problem yet

So we introduce a concept of...

Earth Overshoot Day

Haifin Owers hout Day

"Earth Overshoot Day marks the date when humanity has USED ALL the BIOLOGICAL RESOURCES that Earth regenerates during the entire YEAR."

Leith Overship in Derv

Biocapacity to regenerate the biological resources we use/measure in one year

Leith Overshippit Dery

Until then, we used up less than 100% of the available biocapacity

Leith Oxers hout Dery

Since 1970 we are using more biological resources than available: excess

Global amount in 2022

Global amount in 2022

And these amounts show the global scale

However we decided to narrow down our scope and look at a more local scale

Prague

Czech Overshoot Day

Metric	Amount/year
Energy	809 167 m ³
Waste	4 071 479 m ³
CO ₂ emissions	40 698 581 m³
Water	654 950 722 m ³
Agriculture	304 500 000 m ³
Infrastructure	21 249 000 m ³
Area of buildings	40 373 100 m ³

1 km² of Prague

Metric	Amount/year
Energy	1 847 m ³
Waste	8 209 m ³
CO ₂ emissions	82 054 m ³
Water	1 320 465 m ³
Agriculture	613 911 m ³
Infrastructure	42 841 m ³
Area of buildings	81 397 m ³

Volume: 959 724 m³

Area: 2 148 877 m²

Height: 1 m

Comparison of cubes

the Earth

1km² of Prague

Comparison of values cubes

Comparison of values cubes

Comparison of values cubes

1 km² of Prague

Metric	Pop. 1.27 million in 2022/year	Pop. 1.55 million in 2122/year
Energy	1.847 m^3	2 268 m ³
Waste	8 209 m ³	10 080 m ³
CO ₂ emissions	82 054 m ³	100 762 m ³
Water	$1\ 320\ 465\ m^3$	1 620 788 m ³
Agriculture	613 911 m ³	753 883 m ³
Infrastructure	42 841 m³	52 608 m ³
Area of buildings	81 397 m ³	99 956 m ³

Volume: 2 640 345 m³

Comparison of excess and biocapacity

Excess

You see that if we act the same, the excess will keep growing

But there are ways we can change our behaviour to mitigate this excess

One of which is reducing the intake of animal products in our diet

Amount for 1km² of Prague

Metric	Pop. 1.27 million in 2022/year	Pop. 1.55 million in 2122/year	eats vegan in 2122/year
Energy	1.847 m^3	2 268 m ³	2 211 m ³
Waste	8 209 m ³	10 080 m ³	9 922 m³
CO ₂ emissions	82 054 m³	100 762 m ³	96 758 m ³
Water	1 320 465 m ³	1 620 788 m³	1 161 781 m ³
Agriculture	613 911 m³	753 883 m ³	422 175 m ³
Infrastructure	42 841 m ³	52 608 m ³	52 608 m ³
Area of buildings	81 397 m ³	99 956 m ³	99 956 m ³

Amount for 1km² of Prague in 2122 if everyone eats vegan

Volume: 1 845 411 m³

Amount for 1km² of Prague

[CONNECT 4 CLIMATE, THE WORLD COUNTS

Comparison of excess and biocapacity

[CONNECT 4 CLIMATE, THE WORLD COUNTS]

Excess

[CONNECT 4 CLIMATE, THE WORLD COUNTS

Other behavioural changes include the reduction in consumption of resources such as water or materials

Or sourcing resources strictly locally and cutting on emissions from long haul transport

Changing our behaviour is not enough

There are countries such as Benin or Jamaica with low excess and therefore the overshoot day is later or none These countries tend to have low GDP and high poverty rate, almost 80% of people in Benin live on less than 5 euros per day

What if we could replace the excesscube with a biocube?

We need to invent!

Bioinventions

From inventions

to bioinventions

Electric cars

Paper based materials

Retention tanks

Wind power plants

Vertical cities

Vertical farms

Tiny houses

Electric cars

Paper based materials

Retention tanks

Wind power plants

Vertical cities

Vertical farms

Tiny houses

Artificial products
Linear process
Not biodegradable

Electric cars

Paper based materials

Retention tanks

Wind power plants

Vertical cities

Vertical farms

Tiny houses

Artificial products

Linear process

Not biodegradable

Disruption of cycles

Bioinventions

Material categorisation

now

algae packaging

glowing fungi

coral

trout sensor

hemp fabrics

now natural rubber latex fabrics natural rubber latex sealant natural rubber sand battery sponge filter graphene corn insulation latex mortar water retaining water collecting sponge spidersilk photonic crystals mycorrhizal network indoor biofarms spiderweb fabrics spidersilk reinforcement spidersilk medical items pigment electricity mycelium +100generator megastructure years coffee ground tiles coffee ground wall glowing air particles pigmented clothes modified modified glowing wall glowing chair glowing soil glowing tree plants insects mycelium insulation mycelium chair mycelium bed mycelium mangrove foundations aloe vera citrus shading mycelium bat sensor soil sponge farms packaging pipes nourishing wall luffa wall luffa bed cellulose fabrics bacterial-cellulose leather fog catcher plankton ponds chlorophyll O2 cellulose cellulose-aerogel reinforcement ultralight material generator eggshell tableware eggshell wall eggshell furniture plastic composter

+100 years

+500 years

eggshell wall

cloud generator

flying biomes

glowing skin

power-plant

chitin shading membrane

forest clouds

CO2 crystals

biomemory material

noise cancelling material keratin net

photonic structure

topas charger

rain generator

Surface greenifier

Covering all the surfaces with vegetation based on their specific biome.

Surface greenifier

[ATLAS FOR THE END OF THE WORLD]

Terrestrial biomes

Types of terrestrial biomes

Montane Grasslands & Shrublands

Grasslands, Savannas & Shrublands miexed with Boreal Forest

Tropical and Subtropical Moist Broadleaf Forests

Tropical & Subtropical Coniferous Forests

Mediterranean Forests, Woodlands & Scrub

Deserts & Xeric Shrublands

Tropical & Subtropical Grasslands, Savannas & Shrublands

Flooded Grasslands & Savannas

Boreal Forest/ Tajga

Tundra

What?

Terrestrial biomes

Identified by characteristic dominant trees and plants

Mediterranean forests

Montane grasslands

Savannas with forests

Tr./subtr. broadleaf forests

Coniferous forests

Broadleaf mixed forests

Tr./subtr. savannas

Flooded grasslands

Taiga

Tundra

Surface greenifier

What?

Broadleaf mixed forests

Temperate broadleaf and mixed forests occur in areas with distinct warm and cool seasons that give them moderate annual average temperatures — 3 to 23 °C

Mediterranean forests

Montane grasslands

Savannas with forests

Tr./subtr. broadleaf

Coniferous forests

Tr./subtr. savannas

Flooded grasslands

Taiga

Tundra

Surface greenifier

What?

Broadleafmixed forests

Canopy

tall trees 30-60 m

Sub-canopy

Smaller mature trees 30 - 60 m

Shrub layer

Low growing woody plants

Herbaceous layer

Most diverse

to reduce

CO₂ emissions

to create

to maintain

reinforcement of

cooling effect

biodiversity

the soil

to reduce

CO₂ emissions

The Czech Republic produces 96.2 million tons of CO_2 per year.

The average temperature in the Czech Republic will

increase by 10°C in 100 years

Surface greenifier

How?

A human being breathes about

9.5 m³ of O₂ per year

that equals to oxygen production of

8 trees per year

The mesophyll part absorbs the infrared radiation which has

a cooling effect

 $-29 581 \text{ m}^3 \text{ of CO}_2$ emissions

1km² of Prague excess

+1 139 831 m³ of surface greenifier

Algae lamp

Bioluminescent algae that generates electrical currents to emit light.

Algae lamp

to decrease the use of nonrenewable

energy

to reduce

to reduce

CO₂ emissions

waste production

to decrease the use of nonrenewable

energy

Lighting represents almost 20% of the world's total energy consumption.

Cities use 60-80% of the world's annual light energy needs.

Illuminance and energy

Variety of microalgal luminescence generates electrical currents that can be utilized as a power source

+ water

1 404 156 m³

 CO_2 emissions by traditional lighting

- 141 810 m³

CO₂ emissions by algal lighting

 $-333~\mathrm{m}^3$ of energy

+63 251 m³ of algae lamp

mycelium megastructure water retaining water collecting sponge spidersilk +100 years pigment electricity generator photonic crystals mycorrhizal network indoor biofarms

Mycelium megastructure

Mycelia are fibres of fungi that can grow on various substrates to form composites which can be used as construction material.

megastructure

to reduce the construction area of

buildings

to reduce

construction waste

to save

energy for heating to reduce

CO₂ emmisions

to reduce the construction area of

buildings

In 2022, the number of buildings constructed in European urban areas is 500 000.

Mycelium megastructure will regenerate itself

Porosity

Adhesion

main building material has capability to act as natural glue.

durable + resistant

Living in density

The megastructure allows to build highly dense vertical cities thanks to intertwining of **pores and cavities**

taking inspiration from gyroid

Reinforcement

Spider silk could serve as reinforcement for other structures improving their strength, reducing the volume needed, the weight and also reducing waste.

Spidersilk reinforcement

A strand of spider silk is made up of many smaller strands which improves the durability and strenght of the silk.

Spider web is by weight 5 times stronger than steel.

-58 688 m³ of buildings

+951 230 m³ of mycelium megastructure

1km² of Prague excess

Water retaining sponge

Sponge

acces to

safe water

to limit

to prevent

droughts

floods

acces to

safe water

1 of 3 people do not have access to safe water

Countries with safe water

Sponges are known for their exceptional ability to accumulate water.

Sponge can accumulate up to 14 times its weight

Water is **filtered** as it flows inside the **pores and channels** of the sponge.

Porous organic layer of sponge

Excessive water is retained inside.

Water droplets flow through the retaining sponge.

 $-317 352 \text{ m}^3 \text{ of water}$

+0.2 m³ of water retaining sponge

1km² of Prague excess

Water collecting spider silk

Why?

to collect

to reduce

waste

Water collecting spider silk

How?

Dry silk thread

Wet silk thread

Condensation of water from air creating droplets

WATER COLLECTOR

1 g of spider web can hold

160 g of water 1 m³ of spider web can hold

1 m³ of water

 $-317 352 \text{ m}^3 \text{ of water}$

+58 m³ of water collecting spider silk

1km² of Prague excess

Why?

more effective use of solar

energy

get rid of

reduce solar panels

fossil fuels

waste

Why?

more effective use of solar

energy

To power up Prague for one day by solar panels, we need 37 km^2 of land, which is $27 \times \text{Old Town Square}$.

How?

Special pigment molecule called xanthopterin can harvest

energy from the sun.

How?

Xanthopterin

is found in bodies of Oriental hornet.

The **yellow** stripe is made from pinhole depressions – contains xanthopterin.

Implementation

We can implement this pigment into the mycelium megastructure.

 $67 515 \text{ m}^3 = 500 \text{ m}^3$

solar panels

pigment molecules

 $-333 \text{ m}^3 \text{ of energy}$

+2 733 m³ of pigment electricity generator

Photonic crystals

Nanostructures found in animal skin that can either reflect or absorb the light.

Photonic crystals

Why?

to decrease nonrenewable

energy

to provide

to store

sunlight

energy

Why?

to decrease nonrenewable

energy

Energy needed for the lightning demands in Prague makes up to 496 gWh per year

496 gWh = production from 83 wind turbines per year

Photonic crystals have the ability to respond to sunlight differently according to their wavelengths.

It can either reflect or absorb the photons.

Sunlight

Reflection

In nature we can mainly observe the **reflectivity** of crystals.

Which causes skin **coloration** and the ability of **camouflage**.

Sunlight

For the biotopia the main use is absorption of sunlight.

Photonic crystals are able to imitate certain wavelengths of light with their structure, which allows them to **transport photons.**

Transportation of photons

Sunlight ———— Photonic crystals ————— Transport of photons biofarms

 $-333 \text{ m}^3 \text{ of energy}$

 $+32~050~m^3$ of photonic crystals

Mycorrhizal network

Network that connects fungi and plants, allowing them to transfer essential nutrients between the participants.

Mycorrhizal network

Why?

to store

 CO_2

to connect

to reduce

ecosystem

infrastructure

The plants and fungi are in **symbiosis**.

Mycelium

 fungi roots are transporting the substances

Interconnecting channel

- through the support system

Nutrition source

- for the indoor farms

How to connect?

Biosensors

the way to connect

Elastomers

They work as **Sensors** in the network, transforming its **form** in reaction to light, change of temperature, magneticity and electricity

Biological chip

inserted into us

Biochip

Connection between humans and mycorrhizal network

Biological chip

connection with the network

 $-29 581 \text{ m}^3 \text{ of }$ $CO_2 \text{ emissions}$

+855 m³ of mycorrhizal network

Indoor biofarms

Indoor farms for growing crops which are integrated into the mycelium megastructure.

Indoor biofarms

Why?

to reduce

agriculture

to increase

to reduce

to reduce

biodiversity

deforestation

 CO_2

Why?

to reduce

agriculture

Which now uses 46% of habitable land.

Indoor biofarms

Habitable Land 71%

Growing and breeding 46%

Growing 23%

Because of it we are losing the nature and 24 000 species are at risk of extincion

The world produces 4 billion tons of food per year.

Why?

That's weight of $18\,\,000$ cargo ships.

Hydroponic principle

Hydroponic plants are 30% more productive than plants growing in soil.

Earth

What do we have?

What does it provide?

What do we invent?

What does it do?

Indoor biofarms

How?

-442 630 m³ of agriculture

+43 845 m³ of indoor biofarms

Regenerative flexible structure

Flexible and adaptable structure made of a biocomposite material with regenerative features.

Why?

to reduce

waste

to reduce

to reduce

to reduce

built up space

CO₂ emissions

water

Why?

to reduce

waste

The construction sector is responsible for almost 33% of total waste.

No data

Annual municipal solid waste

0.5 - 1 kg/capita/day

1-1,5 kg/capita/day

0-0.5 kg/capita/day

[THE WORLD BANK]

greater than 1,5 kg/capita/day

Czech Republic produces

3 650 000 tons of waste per year which is the weight of

11 Empire State Buildings

Shape flexibility

Neri Oxman generates 3D printed structures that allowe the transition from beam to mesh, and to windows, if scaled larger.

Shape flexibility by itself

Phototropism

Shape flexibility by itself

Creating shade if needed

Shape flexibility by itself

Flexible chair

Shape flexibility with biochip

Stiff wall without water

Malleable wall with water

Decomposability

Decomposition in the ground

Decomposability

Regeneration

Regenerative process

Regeneration

Adding bacteria

30 m³

building structure and furniture

10 m³ regenerative flexible structure

 $-5 918 \text{ m}^3 \text{ of waste}$

+475 615 m³ of regenerative flexible structure

1km² of Prague excess

Cloud generator

Cloud generator combines water droplets with aerosol, resulting in a more humid environment.

Cloud generator

to regulate

to reduce

UV rays

to regulate

temperature

Keeping the humidity between 40-60% reduces the spread of droplet-borne diseases.

${ m H_2O}$ transpiration

How?

Plant **Calla Lily** drops excessive amount of water.

Microalgae

Emits particles such as aerosol

Microalgae

growing through mycelium

Plant **Calla Lily** growing through the mycelium structure

 $-317 352 \text{ m}^3 \text{ of water}$

+7 398 m³ of cloud generator

1km² of Prague excess

Noise utilizer

Noise utilizer uses noise as a source of energy to generate electricity while reducing the noise pollution.

Noise utilizer

to produce renewable

to save

to reduce and utilize

to reduce

biodiversity

noise pollution

 CO_2

to produce renewable

energy

The world generates over 66% of the electricity from fossil fuels.

Noise levels (dB)

30	Leaves, whisper
40-50	Quiet suburb
60	Human conversation
70	Background urban life
80	Heavy traffic
90	Subway
100	Motorcycle
110	Chainsaw
120	Sirens
130	Trains
140-160	Jet take of

~0,6 Pa ~12 V lightbulb

Piezoelectric materials, a type of "smart" material that generates electricity in response to vibrations.

This principal is used in transducers.

Crystalline **nano cellulose** works as a **biotransducer layer**.

When sound waves enter the pores,

sound energy is caused by vibration of the air contained inside.

Hypha – mycelium structure

1 m^2 of noise utilizer = 500 lightbulbs

 $-333~\mathrm{m}^3$ of energy

+214 m³ of noise utilizer

Transportation bubbles

Flying bubbles which are based on the electricity-generating cells of the electric eel.

bubles

to reduce

infrastructure

to reduce

to reduce

CO₂ emissions

noise pollution

to reduce

infrastructure

The Earth's surface is shattered by roads into more than 600 000 fragments, more than half of them are smaller than 1 km².

Transportation takes 10% of the surface of Prague. Forests take 10.3% of the surface of Prague.

2 400 billion m³

of infrastructure space

2 400 billion m³

of free space

HOW?

We can use eel's **electric cells** for creating a **membrane** that powers flying flocks.

How?

Electric eel produces a $100\text{-}600V_{\text{strong jolt.}}$

The same amount of electricity as one socket.

How?

Electric jolt

Salt water

Positively charged particles

Fresh water

Negatively charged particles - IONS

Electricity-generating membrane

Hot air

Fin/wing

Static electricity that holds bubbles together

How?

By connecting flocks together we can transport heavy objects

How?

Bubbles draw **nutrients** from the

mycorrhizal network

by connecting to the

mycelium megastructure.

-30 888 m³ of infrastructure

+2 595 m³ of transportation bubbles

1km² of Prague excess

All the bioinventions together form a BIOCUBE

Biocube

All the bioinventions together form a BIOCUBE

BIOCUBE

represents specific number of bioinventions to neutralize the excess

1km² of Prague excess

Biocube

Urgencies

Bionventions

Use of nonrenewable resources

Algae lamp

Noise utilizer

Photonic crystals

Pigment electricity generator

Waste

Regenerative flexible structure

Environmental pollution

Surface greenifier

Mycorrhizal network

Access to safe water

Water retaining sponge

Cloud generator

Water collecting spider silk

Growing population

Mycelium megastructure

Transportation bubbles

Indoor biofarms

Bionventions	m^3	6.3 m 0.02 m 3.2 m	
Algae lamp	63 251	0.27 m	
Noise utilizer	214	40	
Photonic crystals	32 050	48 m	
Pigment electricity generator	2 733		
Regenerative flexible structure	475 615	114 m	
Surface greenifier Mycorrhizal network	1 139 831 855	0.09 m 0.000 02 m 0.7 m 0.01 m	
Water retaining sponge	0.2		
Cloud generator	7 398		
Water collecting spider silk	58	95 m	
Mycelium megastructure	951 230		
Transportation bubbles	2 595	0.3 m	A STATE OF THE STA
Indoor biofarms	43 845	4.4 m	
			100 m 100 m

The biocube consists of complex blended bioinventions

How do we apply this complex system?

How do we apply this complex system?

How do we analyse it?

How do we apply this complex system?

How do we analyse it?

How do we visualize it and simplify it?

Voxels

Voxels

Term used in computer-based modelling or graphic simulation.

A notional three-dimensional space consisted of elements of volume.

HOW?

Allows us to quickly determine volumetric data

And to compare the differences of otherwise very organic elements and innovations.

Pixels

Inventions Amount of voxels

Algae lamp	2 343
Noise utilizer	8
Photonic crystals	1 187
Pigment electricity generator	101
Regenerative flexible structure	17 615
Surface greenifier	42 215
Mycorrhizal network	32
Water retaining sponge	0,006
Cloud generator	274
Water collecting spider silk	2
Mycelium megastructure	35 230
Transportation bubbles	96
Indoor biofarms	1 623

Biocube distribution

Principles of distribution

Surface greenifier

Distributed on AIR POLLUTED places

POLLUTION MAP

SO₂ annual average concentrations

- 3,8 3,85 μg/m³
- 3,85 3,9 μg/m³

Emissions of nitrogen oxides

- > 3 5 t/year
- > 5 10 t/year
- > 20 40 t/year

Algae lamp

Distributed along the STREETS and in PUBLIC AREAS

Water retaining sponge

Distributed on SHADED PLACES

Cloud generator

Distributed on HEAT ISLANDS

HEAT MAP

0°C 46°C

Mycelium megastructure

Grows out of ABANDONED and DESTROYED buildings

UNUSED SPACE MAP

unused used

Noise utilizer

Distributed on the NOISE POLLUTED places

NOISE MAP

- ≤ 40 dB
- > 40 45 dB
- > 45 50 dB
- > 50 55 dB
- > 55 60 dB
- > 60 65 dB
- > 65 70 dB
- > 75 80 dB
- > 80 dB

Pigment electricity

Distributed on SUNNY PLACES

Indoor biofarms

Photonic crystals

Mycorrhizal network

Regenerative flexible structure

Transportation bubbles

Position depends on actual needs

Biostructure

Biomatter

The sponge

How would the life in the sponge look like?

How would the life in the sponge look like?

Adaptibility

Biodegradability

Outdoor conditions

Connectivity

How would the life in the sponge look like?

Adaptibility

Biodegradability

Outdoor conditions

Connectivity

How would the life in the sponge look like?

Adaptibility

Biodegradability

Outdoor conditions

Connectivity

Photonic crystals

How would the life in the sponge look like?

Adaptibility

Biodegradability

Outdoor conditions

Connectivity

Life in the Sponge (The Film)

Outro

Our aim is to propose a series of bioinventions with nature to compensate for our excessive use of the Earth's resources and restore Nature's balance.

We witnessed the harsh impacts of our presence on the Earth

Our target is to reduce this excess

To reduce the excess to zero

So have we achieved it?

On a given scale with a number of assumptions

On a given scale with a number of assumptions – we have

In a form of a complex ecosystem of blended inventions – The Sponge

We learnt that bioinventions are insufficient on their own

That we need to blend into a biomatter

Which brought us back to concepts nature has taught us a while ago

Become part of a self-regulating system

Draw from millennia-old knowledge

In short: live in symbiosis with nature

It is our utopian vision of what the future can become

Our design vision

To which we would need the input from multiple professions

Where the real fruitful cross pollination could take place

To produce real life applicable solutions

This reasearch is a small fraction of everything to be done yet

And include culture and society's role within BIOTOPIA

BIOTOPIA

For centuries, design focused on objects with single meanings:

everything was architecture

For centuries, design focused on objects with single meanings:

everything was architecture

More recently, we zoomed out to look for new meanings, at every scale, from the very small to the very large:

everything was urbanism

More recently, we zoomed out to look for new meanings, at every scale, from the very small to the very large: everything was urbanism

Latterly, design has finally started to -timidly- understand the meaning of 'green':

everything was landscape

Latterly, design has finally started to -timidly- understand the meaning of 'green':

everything was landscape

Welcome to the era of biology

01 Introduction

BOOKS

LATOUR, Bruno, 2017. Facing Gaia: eight lectures on the new climatic regime. Přeložil Catherine PORTER. Medford: Polity. ISBN 9780745684345.

WATSON, Julia, 2019. Lo-TEK: Design by Radical Indigenism. Taschen Verlag, 420 s. ISBN 9783836578189.

KOOLHAAS, Rem a AMO, 2020. Countryside: A Report. Taschen. ISBN 9783836584395.

MAPS

https://atlas-for-the-end-of-the-world.com/world_maps/world_maps_rivers.html

https://vividmaps.com/worlds-forests-mapped/?fbclid=IwAR2iz8M3ZOsTao1OkPnw4OCYDcLzdRlRpwKEZQw6Ojo_hrj_

https://atlas-for-the-end-of-the-world.com/world_maps/world_maps_ocean_currents.html

https://atlas-for-the-end-of-the-world.com/world_maps/world_maps_biomes.html

https://ourworldindata.org/biodiversity-and-wildlife

https://www.reddit.com/r/MapPom/comments/44y90h/annual_sunshine_hours_map_of_the_world_2753_1400/

https://www.britannica.com/science/trade-wind

https://www.cnet.com/culture/free-web-map-shows-where-the-wind-blows/

https://ourworldindata.org/world-population-growth#the-distribution-of-the-world-population-over-the-last-5000-years

https://ourworldindata.org/world-population-growth # the-distribution-of-the-world-population-over-the-last-5000-years

https://ourworldindata.org/world-population-growth

 $\label{lem:https://atlas.mapy.cz/?p=010101&id=znehodnocenipud&n=m&z=2.3&x=0.000&y=0.000&m=m$

https://wri-indonesia.org/en/blog/when-tree-falls-it-deforestation

https://ourworldindata.org/energy-mix?fbclid=IwAR3FwltsWJooZGdmSXQE1jGfgmmRnTS6wgUSo3h4PUP7WI5DEYNfXdyW5Sk

https://education.nationalgeographic.org/resource/drowning-plastic

FACTS

https://www.thefreelibrary.com/Managerial+ecology%3A+Zygmunt+Bauman+and+the+gardening+culture+of...-a0100389320

https://education.nationalgeographic.org/resource/resource-library-age-earth

https://www.nationalgeographic.com/environment/article/the-world-now-has-8-billion-people

https://www.wolframalpha.com/

URGENCIES

https://www.over-view.com/daily

https://www.google.com/intl/cs/earth/

https://www.weforum.org/agenda/2022/08/access-clean-water-inequality-financing/

https://muse.union.edu/mth-063-01-f18/2018/09/23/where-our-garbage-goes/

https://ourworldindata.org/global-energy-200-years

https://ourworldindata.org/world-population-growth

https://ourworldindata.org/grapher/global-co2-emissions-fossil-land

https://www.overshootday.org/

CYCLES

https://earthobservatory.nasa.gov/features/CarbonCycle

https://www.britannica.com/science/carbon-cycle

https://www.britannica.com/science/nitrogen-cycle

https://www.nature.com/scitable/knowledge/library/the-nitrogen-cycle-processes-players-and-human-15644632/

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/nitrogen-cycle

https://www.britannica.com/science/oxygen-cycle

https://www.geekstorgeeks.org/oxygen-cycle-production-stages-uses-importance/

https://www.britannica.com/science/phosphorus-cycle

https://www.sciencelearn.org.nz/resources/961-the-phosphorus-cycle

https://www.britannica.com/science/water-cycle

https://science.nasa.gov/earth-science/oceanography/ocean-earth-system/ocean-water-cycle

https://www.metoffice.gov.uk/weather/learn-about/weather/how-weather-works/water-cycle

https://cropforlife.com/negative-effects-of-agriculture-on-the-environment/

https://www.epa.gov/heatislands/learn-about-heat-islands

https://scied.ucar.edu/learning-xone/how-climateworks/greenhouse-effect

https://earth.org/environmental-problems-caused-by-mining/

https://web.mit.edu/12.000/www/m2016/finalwebsite/problems/mining.html

https://www.nationalgeographic.org/unit/detours-and-distractions/

https://www.cms.int/en/species/threats/infrastructure

https://www.sehinc.com/news/how-urban-water-cycle-works

https://www.teachengineering.org/lessons/view/usf_stormwater_lesson01

02 Needs

PRAGUE DATA

https://en.wikipedia.org/wiki/Prague

https://iprpraha.cz/uploads/assets/soubory/data/UAP/UAP2012/2_3_vyuziti_uzemi.pdi?fbclid=IwARtWFSHedtlB_vpLNfxJGMu9MjRMdh_IIKYCSygzBGOsHNSFEZdI.MfNI.-IM

VEGAN CALCULATION

https://www.vitalia.cz/clanky/spotreba-jidla-v-cr-kolik-toho-snime/

https://www.connect4climate.org/initiative/what-are-food-miles

https://zpravy.aktualne.cz/finance/nakupovani/potravinova-sobestacnost/r~a080f45caeed11eaa25cac1f6b220ee8/

BIOCUBE

Mycellium megastructure

https://www.seedlipdrinks.com/en-ca/journal/mycelium-101/

Dip - tree

htlps://ecotree.green/en/how-much-co2-does-a-tree-absorb#answer

Sponge

https://bionumbers.hms.harvard.edu/bionumber.aspx?s=n&v=2&id=113284

Flocks

https://en.wikipedia.org/wiki/Motor_vehicle

Glow

https://www.freethink.com/energy/bacteria-streetlights-france

https://goldbio.com/articles/article/uncovering-the-mystery-behind-glow-in-the-dark-fungi

https://mediatum.ub.tum.de/doc/1169250/1169250.pdf

https://www.technologynetworks.com/appliedsciences/news/making-the-most-of-algaes-energy-generatingproperties-354862

https://parametric.press/issue-02/algae/

Nourish

Cloud generator https://www.surfertoday.com/environment/howare-clouds-formed

https://www.spirithalloween.com/blog/how-to-use-a-fog-machine-and-more-commonly-asked-questions/

https://www.usgs.gov/special-topics/water-science-school/science/how-much-does-cloud-weigh

Oriental hornet

https://asknature.org/strategy/pigments-absorb-solarenergy/?fbclid=IwAR3H_McNw5dpuLlbiMR37g5s5vv5FPodRjqvh tcCAcOc_k1xsRSWsgiSKdM

https://newatlas.com/hornet-harvests-electricity-fromsunlight/17194/?fbclid=IwAR3H_McNw5dpuI.IbiMR37g5s5vv5FP odRjqvhtcCAcOc_k1xsRSWsqiSKdM

Spiderweb

https://www.pestshero.com/how-much-can-a-spider-lift/

03 Design Inventions

SURFACE GREENIFIER

https://en.wikipedia.org/wiki/Temperate_broadleaf_and_mixed_forests

https://www.greenandgrowing.org/coniferous-forest-biome-preserving/

https://geodiode.com/biomes/taiga-

http://www.ecologypocketguide.com/flooded-grasslands-and-savannas

https://www.renovablesverdes.com/paramo/

https://en.wikipedia.org/wiki/Montane_grasslands_and_shrublands

https://thewildclassroom.com/biomes/tropical-savanna/

http://www.biologyreference.com/Bl-Ce/C4-and-CAM-Plants.html

https://www.appropedia.org/Layers

https://www.gardencityharvest.org/the-real-dirt-garden-city-harvest-blog/2020/12/26/what-is-a-food-forest

https://www.britannica.com/science/photosynthesis

https://science.nasa.gov/ems/08_nearinfraredwaves

https://ecotree.green/en/how-much-co2-does-a-tree-absorb

https://www.sciencefocus.com/planet-earth/how-many-trees-does-it-take-to-produce-oxygen-for-one-person/https://www.worldometers.into/co2-emissions/czechia-co2-emissions/

https://www.theconsciouschallenge.org/ecologicalfootprintbibleoverview/oxygen-global-overview

https://climate.peopleinneed.net/czech-republic

https://www.macrotrends.net/countries/CZE/czech-republic/carbon-co2-emissions

ALGAE LAMP

https://www.azocleantech.com/article.aspx?ArticleID=387

https://www.smithsonianmag.com/innovation/can-an-algae-powered-lamp-quench-our-thirst-for-energy-3509307/

https://carbonworks.bio/en/

https://www.inverse.com/input/tech/algae-battery-power-computer-research

https://www.unep.org/resources/report/rapid-transition-energy-efficient-lighting-integrated-policy-approach

https://wedocs.unep.org/bitstream/handle/20.500.11822/8468/-The%20rapid%20transition%20to%20energy%20efficient%20lighting_%20an%20integrated%20policy%20approach%20-2013en.lighten%20Policy%20Brochure%20-%20English.pdf?sequence=3&%3BisAllowed=

https://unhabitat.org/topic/urban-energy

https://www.visualcapitalist.com/a-global-breakdown-of-greenhouse-gas-emissions-by-sector/

https://www.cam.ac.uk/research/news/harnessing-the-power-of-algae-new-greener-fuel-cells-move-step-closer-to-reality

https://www.saving-light-bulbs.co.uk/blog/how-much-co2-does-a-light-bulb-create/

https://ourworldindata.org/co2-emissions

https://new.abb.com/low-voltage/news/news-archive/climatefor-change-in-street-lighting

https://www.azocleantech.com/article.aspx?ArticleID=1499

https://pyrofarms.com/blogs/pyrofarms-blue-light-special/the-rise-and-fall-of-the-dinos-1

MYCELIUM MEGASTRUCTURE

https://www.buildwithrise.com/stories/mycelium-fungi-as-a-building-material

https://theconstructor.org/building/building-material/mycelium-construction-material/565623/

https://www.realmushrooms.com/mushroom-mycelium-uses/

https://www.realmushrooms.com/medicinal-mushroom-benefits-fruiting-body-vs-mycelium/

https://blogs.scientificamerican.com/observations/the-mycelium-revolution-is-upon-us/

https://en.wikipedia.org/wiki/Mycelium

https://www.nature.com/articles/srep/41292#;~:text=Mycelium%2.0is%20mainly%20composed%20of,amounts%20of%20mycelium%2. Dbased%20materials.

https://theconversation.com/5-ways-fungi-could-change-the-world-from-cleaning-water-to-breaking-down-plastics-157320

https://www.myceliummaterials.nl/

https://cdn.redshift.autodesk.com/2018/08/13000-buildings-per-day-infographic1.pdf

https://mathworld.wolfram.com/Gyroid.html

WATER RETAINING SPONGE

https://www.dezeen.com/2021/11/02/dezeen-15-interview-winy-maas-talk/

https://www.dezeen.com/2021/11/02/the-sponge-winy-maas-manifesto-dezeen-15/

https://www.dezeen.com/2018/10/25/sponge-mountain-angelorenna-absorb-pollution-climate-change/

https://www.un.org/sustainabledevelopment/water-and-sanitation/

https://ourworldindata.org/water-access

https://www.vox.com/2014/8/13/5998765/map-all-the-places-where-the-cdc-says-you-cant-drink-the-water

https://stock.adobe.com/at/images/sponge-background/21351277

https://en.wikipedia.org/wiki/Sponge

https://phys.org/news/2015-10-tiny-sponges-counterintuitive-adsorbing.html

https://cz.pinterest.com/pin/water-cycle-vector-illustration-diagram-geo-science-ecosystem-scheme-water-cycle-vector-illustration-diagram-evaporation-817192294886627601/

WATER COLLECTING SPIDER SILK

https://news.itmo.ru/en/science/life_science/news/10059/

https://www.zmescience.com/science/physics/spider-silk-biosteel-amsilk-11032014/

https://www.researchgate.net/figure/Structures-of-dry-and-wet-rebuilt-cribellate-spider-silk-5-a-Low-magnification_fig6_262932013

https://www.pestshero.com/how-much-can-a-spider-lift/

PIGMENT ELECTRICITY GENERATOR

https://asknature.org/strategy/pigments-absorb-solar-energy/

https://www.nationalgeographic.com/animals/article/101221-solar-power-hornet-science-animals

https://betterenergy.org/blog/the-true-land-footprint-of-solar-energy/

https://www.biolib.cz/en/taxonimage/id68489/?taxonid=230731&type=1

https://asknature.org/strategy/pigments-absorb-solar-energy/

https://www.quora.com/How-much-electric-energy-is-used-for-lighting-worldwide-In-order-to-evaluate-the-reduction-in-global-energy-consumption-from-the-LED-revolution

https://www.goodenergy.co.uk/how-do-wind-turbines-work/

https://www.quora.com/How-much-electric-energy-is-used-for-lighting-worldwide-In-order-to-evaluate-the-reduction-in-global-energy-consumption-from-the-LED-revolution

https://www.osti.gov/servlets/purl/809625-1RKtd8/native/]

https://www.researchgate.net/publication/277023904_Artificial_Opal_Photonic_Crystals_and_Inverse_Opal_Structures_-_Fundamentals_and_Applications_from_Optics_to_Rnergy_Storage

https://www.researchgate.net/publication/277023904_Artificial_Opal_Photonic_Crystals_and_Inverse_Opal_Structures_-_Fundamentals_and_Applications_from_Optics_to_Energy_Storage

https://www.researchgate.net/publication/332559250_Bioinspired_Sensing_and_Actuating_Materials

https://www.gotrhythm.com/blog/solar-energy/how-much-power-does-a-solar-panel-produce

PHOTONIC CRYSTALS

https://www.researchgate.net/figure/Schematic-and-SEM-imageof-a-a-GaAs-filled-PhC-template-and-b-an-inverted-GaAs_fig13_277023904

https://www.researchgate.net/figure/The-principle-fabricationand-applications-of-chameleon-inspired-responsivephotonic fig2 332559250

https://www.quora.com/How-much-electric-energy-is-used-for-lighting-worldwide-In-order-to-evaluate-the-reduction-in-global-energy-consumption-from-the-LED-revolution

https://www.goodenergy.co.uk/how-do-wind-turbines-work/

https://www.osti.gov/biblio/809625

https://www.researchgate.net/publication/277023904_Artificial_Opal_Photonic_Crystals_and_Inverse_Opal_Structures_-_Fundamentals_and_Applications_from_Optics_to_Energy_Storage

https://www.researchgate.net/publication/332559250_Bioinspired_Sensing_and_Actuating_Materials

MYCORRHIZAL NETWORK

https://www.weforum.org/agenda/2022/07/fungi-forests-carbon-climate/

https://www.researchgate.net/publication/348975303_Can_comm on_mycorrhizal_fungal_networks_be_managed_to_enhance_ecos ystem_

https://www.researchgate.net/publication/332559250_Bioinspired_Sensing_and_Actuating_Materials

https://www.researchgate.net/publication/348975303_Can_common_mycorrhizal_fungal_networks_be_managed_to_enhance_ecosystem_functionality

https://www.meme-arsenal.com/en/create/template/1518919

INDOOR BIOFARMS

https://ourworldindata.org/land-use

https://www.unep.org/news-and-stories/press-release/our-global-food-system-primary-driver-biodiversity-loss

https://www.bloomberg.com/news/features/2020-12-15/no-more-hunger-how-to-feed-everyone-on-earth-with-just-the-land-we-have#:~:text=At%20the%20moment%2C%20the%20world,and%20 Agriculture%20Organization%20(FAO).

https://maritimepage.com/how-much-does-a-cargo-ship-weigh/

https://avestia.com/MCM2018_Proceedings/files/paper/ICMIE/ICMIE_131.pdf

REGENERATIVE FLEXIBLE STRUCTURE

https://architecture2030.org/why-the-building-sector/

https://datatopics.worldbank.org/what-a-waste/

https://www.bigrentz.com/blog/construction-waste-statistics

https://oxman.com/projects/aguahoja

https://oxman.com/projects/water-based-digital-fabrication

https://en.wikipedia.org/wiki/Biocomposite

https://education.nationalgeographic.org/resource/adaptation-and-survival

https://www.turito.com/learn/biology/structural-and-behavioral-adaptations-grade-8

https://www.bbc.co.uk/bitesize/guides/z86gpbk/revision/8

https://www.encyclopedia.com/science-and-technology/biology-and-genetics/biology-general/tropism

https://www.yourhome.gov.au/materials/embodied-energy

https://homework.study.com/explanation/explain-gravitropism.html

https://miro.com/app/board/uXjVPDoBZEs=/?moveToWidget=34 58764540341724047&cot=14

https://www.sciencedirect.com/topics/materials-science/biocompatibility

https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Archive:Waste_statistics

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/phototropism

https://www.sculpteo.com/blog/2017/12/06/potential-3d-printing-materials-inspired-by-nature-chitin-graphene-glass-and-cellulose/

https://www.self-healingmaterials.com/self-healing-concrete/

CLOUD GENERATOR

https://www.condair.rs/germ-droplets-n-dry-air

https://climatekids.nasa.gov/cloud-formation/

https://www.sciencedirect.com/topics/chemicalengineering/transpiration

https://climatekids.nasa.gov/cloud-formation/

https://theconversation.com/us/topics/microalgae-69817

https://cx.pinterest.com/pin/498210777511542666/

https://www.weather.gov/source/zhu/ZHU_Training_Page/clouds/cloud_development/clouds.htm#:~:text=Clouds%20form%20when%20the%20invisible,a%20liquid%20or%20solid%20form.

https://education.nationalgeographic.org/resource/cloud-cover

https://www.iberdrola.com/sustainability/climate-change-endangered-species

https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv)-radiation-and-skin-cancer

NOISE UTILIZER

https://aip.scitation.org/doi/pdf/10.1063/1.4982415

https://justenergy.com/blog/sound-energy-everything-you-need-to-

know/#:~:text=Sound%20vibrations%20can%20become%20 electrical,one%20another%2C%20electromagnetic%20induction%20occurs.

https://noise.eea.europa.eu/

https://hackaday.com/2021/03/15/theres-a-fungus-among-us-that-absorbs-sound-and-does-much-more/

https://www.evolo.us/soundscraper-captures-sound-kinetic-energy-while-reducing-noise-pollution/https://www.the-scientist.com/news-opinion/can-mushrooms-talk-to-each-other-69885

A Study on the Sound Absorption Properties of Mycelium-Based Composites Cultivated on Waste Paper-Based Substrates Natalie Walter * and Benay Gürsoy

Piezoelectric materials for sustainable building structures: Fundamentals and applications Jiayu Chena , Qiwen Qiua , Yilong Hanb , Denvid Lau

https://inhabitat.com/soundscraper-transforms-vibrations-from-city-noise-pollution-into-green-energy/soundscraper-generates-energy-noise-pollution-2/

https://iopscience.iop.org/article/10.1088/1755-1315/83/1/012021/pdf

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622490/

https://pdfs.semanticscholar.org/2192/680f402d4d57408b1b7e5f3bbe00808fce83.pdf

https://www.behance.net/gallery/413244/Urban-Transducer

https://iopscience.iop.org/article/10.1088/1755-1315/83/1/012021/pdf

https://www.nature.com/articles/s41598-021-86520-8

https://www.iea.org/reports/electricity-sector

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955346/

https://www.azonano.com/article.aspx?ArticleID=5328

 $https://www.sciencedirect.com/science/article/abs/pii/S24\\52213918300433\#: \sim: text=Porous\%20sound\%20absorption\%20materials\%20are, of\%20airflow\%20within\%20the\%20materials.]$

https://pdfs.semanticscholar.org/2192/680f402d4d57408b1b 7e5f3bbe00808fce83.pdf

https://www.saving-light-bulbs.co.uk/blog/how-much-co2-does-a-light-bulb-create/

TRANSPORTATION BUBBLES

https://www.scientificamerican.com/article/how-do-electric-eels-gene/

https://physicsworld.com/a/electric-eel-inspires-new-power-source/

https://www.snexplores.org/article/power-source-mimics-electric-eel-zap

https://physicsworld.com/a/electric-eel-inspires-new-power-source/

https://cawood.co.uk/blog/how-to-generate-energy-from-raw-material/

https://sti.epfl.ch/a-membrane-that-generates-electricity-from-seawater-and-fresh-water/

https://www.statista.com/topics/7476/transportation-emissions-worldwide/#topicHeader__wrapper

https://phys.org/news/2016-12-roads-shatter-earthsurface-fragments.html

https://www.transportshaker-wavestone.com/urban-transports-spatial-footprint-much-space-used-transports-city/

https://iprpraha.cz/uploads/assets/dokumenty/obecne/znate_prahu_e.pdf

https://www.snexplores.org/article/power-source-mimics-electric-eel-zap

05 Distribution

VOXEL

https://en.wikipedia.org/wiki/Prague

https://iprpraha.cz/uploads/assets/soubory/data/UAP/UAP 2012/2_3_vyuziti_uzemi.pdf?fbclid=IwAR1WFSHedtlB_vpL NfxJGMu9MjRMdh_llKYCSyqzBGOsHNSFEZdLMfNL-IM

https://images.nasa.gov/details-sts068-155-011

https://languages.oup.com/google-dictionary-en/

MAPS

https://app.iprpraha.cz/apl/app/ndvi_teplota/

https://app.iprpraha.cz/apl/app/atlaszp/?service[]=hlukova_mapa

https://storymaps.arcgis.com/stories/12bf3e7625cd4551920 0eac7aa09916e

https://app.iprpraha.cz/apl/app/atlas-zp/?service[]=imisni_mapy

https://prazdnedomy.cz/

The Why Factory:

Winy Maas, Javier Arpa Fernández, Adrien Ravon, Lex te Loo, Šimon Knettig

Aigerim Azirkhanova, Natálie Bauerová, Adam Burger, Martina Divišová, Mária Dvorská, Dariia Edunova, Matthew Goh XinZhi, Martin Holman, Klára Hrdličková, Daniel Hub, Karolína Hustá, Tomáš Chrástecký, Michaela Irová, Ola Jin Nymoen, Aza Keledjian, Andrea Krajčovičová, Dominika Krejčíková, Kateřina Krchňáková, Daniel Krupka, Kristína Olívia Lelková, Grigorii Matiunin, David Mecka, Jana Minaříková, Lucia Ňaňková, Jozef Novotný, Magdaléna Pourová, Lucie Řeháková, Gréta Semancová, Kristina Seminog, Johana Simkovičová, Vendula Stehlíková, Barbora Rozálie Strnadová, Zdenka Studená, Petr Sulan, Martin Sýkorský, Kristýna Tesková, Barbora Turková, Michaela Vilímková, Michal Zapletal