

zpracoval David Seidler vedoucí práce RNDr. Vladimíra Hájková, Ph.D. Fakulta architektury ČVUT v Praze 2013

MOŽNOSTI MATH PLUGINU

- zobrazení parametricky popsaných křivek
- zobrazení parametricky popsaných ploch
- vytváření knihovny vlastních tvarů
- možnost dalšího rozvíjení křivek a ploch v prostředí Rhina

MATH PLUGIN - ZPROVOZNĚNÍ

Program Math Plugin je doplňková aplikace Rhina. Funguje ve verzích Rhino 4 a Rhino 5 na 32 a 64 bitovém systému Windows. Je třeba jej stáhnout a implementovat do Rhina dle následujících kroků:

- 1. Stáhnout plugin zde.
- 2. Rozbalit stažený soubor třeba do složky matematika.
- 3. Zapnout Rhino a přetáhnout soubor Math_3DE do prostředí Rhina. Implementuje plugin.
- 4. Přetáhnout soubor 3DE_Math.rui (3DE_Math.tb) do prostředí Rhina 5 (Rhina 4 SR9). Zobrazí ikony.

Pro starší verze Rhina (jedná se o verze Rhino 4 Service Release 8 a nižní) je třeba stáhnout starší verzi pluginu a postupovat dle následujících kroků:

- 1. Stáhnout starší verzi pluginu zde.
- 2. Rozbalit stažený soubor třeba do složky matematika.
- 3. Zapnout Rhino a přetáhnout soubor Math_3DE do prostředí Rhina. Implementuje plugin.
- 4. Přetáhnout soubor 3DE_Math_V4.tb do prostředí Rhina. Přidá možnost zobrazení panelu s ikonami.
- 5. Pravým klikem myši na řádek s ikonama Rhina vyvolat nabídku panelů a zapnout panel s ikonami MathPluginu (Obr 1).

Obr. 1

Řešení problémů se spuštěním pluginu je popsáno na další straně.

POTÍŽE SE SPUŠTĚNÍM

V případě objevení chybové hlášky (Obr. 2) postupujte takto:

- 1. Stejnými kroky implementovat MathPlugin do Rhina.
- 2. Vyvolat jakýkoliv příkaz MathPluginu (např. mathcurve).
- 3. Po objevení chybové hlášky napsat do příkazového řádku Rhina příkaz Math_3DE .

V případě objevení chybové hlášky (Obr. 3) postupujte takto:

- 1. Zavřete Rhino.
- 2. Pravým klikem myši na soubor 👹 Math_3DE vyvolat kontextové menu a vybrat "Vlastnosti".
- 3. Objeví se dialogové okno (Obr. 4), ve kterém kliknout na "Odblokovat".
- 4. Zapnout Rhino a implementovat plugin.

Math_3DE.rhp							
Unable to load I	Math_3DE.r	np plug-in.					
This plug-in car	e from anoth	her comput	ter and	is blocke	d to prote	ct this con	nputer.
To unblock this http://wiki.mcne	plug-in, see eel.com/rhin	o/unblockj	plugin				
		Details		OK			

	vlastnosti	3
ez	zpečení Podrobnosti Předchozí verze	
	Math_3DE	
	Rhino Plug-in (.rhp)	
	C:\Users\Matematika\MathPlugin 444 kB (454 656 bajtů) 444 kB (454 656 bajtů)	
	15. září 2011, 12:12:58 11. července 2013, 12:16:19 15. září 2011, 12:12:58	
	Jen pro čtení Skrytý Upřesnit Tento soubor pochází z jiného počítače a mohl být zablokován z důvodu ochrany počítače.	
	OK Stomo Použít	

PRÁCE S MATH PLUGINEM

V prostředí Rhina lze funkce MathPluginu spustit jak zadáním příkazu do příkazového řádku (Obr. 5), tak kliknutím na příslušnou ikonu pluginu (Obr. 6).

File	Edit	View	Curve	Surface	Solid	Mesh	Dimension
Con	imand: imand:	MathC Math_	Curve 3de				
Com	mand:	Math					
)br. !	5	MathC MathE MathL MathS MathS	urve ditObject ibrary aveObjec urface	t.			

Levé kliknutí vyvolá okno pro zadávání křivek. Pravé kliknutí vyvolá editaci předpisu již vykreslené křivky.

Seznam příkazů:

MathCurve	Vložení parametricky popsané křivky
MathSurface	Vložení parametricky popsané plochy
MathSaveObject	Uložení tvaru a parametrického zápisu do
	knihovny tvarů
MathLibrary	Vyvolání knihovny tvarů
MathEditObject	Úprava parametrického zápisu objektu

Levé kliknutí vyvolá okno pro zadávání ploch. Pravé kliknutí vyvolá okno pro editaci předpisu již vykreslené plochy.

Levé kliknutí uloží vykreslený objekt. Pravé kliknutí vyvolá knihovnu tvarů.

Určete typ kuželosečky a napište její parametrický popis. Kuželosečka je dána rovnicí $4x^2 + 9y^2 - 40x + 36y + 100 = 0$.

$$4x^{2} + 9y^{2} - 40x + 36y + 100 = 0$$

$$\frac{(x-5)^{2}}{9} + \frac{(y+2)^{2}}{4} = 1$$

$$S[5,-2], F[5-\sqrt{5},-2], E[5+\sqrt{5},-2], a = 3, b = 2$$

$$k(t) = [5-3\cos(t),-2-2\sin(t)] t \in \langle 0,2\pi \rangle$$

Příkaz MathCurve:

Levý klik myší na ikonu:

0 1 Hath Curve Hath Edit Object

Prostředí MathPluginu pro křivky používá pro parametr písmeno t (pro plochy písmena *u* a *v*).

V řádku PointCount se nastavuje počet bodů, pomocí kterých se křivka vykresluje. Větší číslo bude znamenat plynulejší vykreslení křivky.

	0	
Maximum t	2*P1	
PointCount	60	
Function X(t)	5-3*cos(t)	
Function Y(t)	-2-2*sin(t)	
Function Z(t)	0	
Variables		

MathPlugin_Křivka

Ainimum t	0
Maximum t	2*pi
PointCount	60
Function X(t)	5-3*cos(t)
Function Y(t)	-2-2*sin(t)
Function Z(t)	0
/ariables	

souřadnou:

Vykreslená křivka s přidanou soustavou

MATEMATICKÉ ZÁPISY

Konstanty		Goniometrické	
π	pı	sin(t)	sin(t)
Používané znaky		$\cos(t)$	cos(t)
Λ	ctrl+alt+3	tg(t)	tan(t)
Aritmetické operace			000000000000000000000000000000000000000
umocňování	2^3	Cyklometrické	
odmocňování	2^(1/3)	arcsin(t)	arcsin(t)
násobení	2*3	arccos(t)	arccos(t)
dělení	2/3	arctg(t)	atn(t)
sčítání	2+3	arccotg(t)	pi/2-atn(t)
odčítání	2-3	Hyperbolické	-
Logaritmické		sinh(t)	hsin(t), sinh(t)
Přirozený logaritmus	log(t)	cosh(t)	ncos(t)
Exponenciální funce	exp(t)		

X

Pro názornost jsou k objektům dokresleny a popsány souřadnicové osy:

PRÁCE S KNIHOVNOU TVARŮ

UKLÁDÁNÍ OBJEKTŮ

Tvary a jejich zápisy v MathPluginu lze ukládat do knihovny tvarů.

Příkaz MathSaveObject:

Šroubovice (42 KB) - Rhinoceros (Educational) (64 File Edit View Curve Surface Solid Mesh Levý klik myší na ikonu:

Of H Hath Save Object Data Hath Library

VYVOLÁNÍ OBJEKTŮ Z KNIHOVNY Objekty lze dále z knihovny vyvolávat a vkládat do prostředí Rhina.

Příkaz MathLibrary:

File	Edit	View	Curve	Surface	Solid	Mes
Com	nmand ectType	l: MathL e <math< td=""><td>ibrary Surface:</td><td>> (MathSu</td><td>urface N</td><td>/lathC</td></math<>	ibrary Surface:	> (MathSu	urface N	/lathC
Com	mand	: MathL	ibrary.			

Zvolím typ objektu, který chci vyvolat (m-plocha, a-křivka):

🖌 Šr	oubov	ice (42	KB) - Rhi	noceros (E	ducatio	onal) (
File	Edit	View	Curve	Surface	Solid	Mes
Obje Corr	ectType nmand	e <math 1: MathL</math 	Surface: .ibrary	> (MathSu	Inface I	MathC
Obje	ectTyp	e <mat< td=""><td>hSurfac</td><td>e> (<u>M</u>athS</td><td>Surface</td><td>Math</td></mat<>	hSurfac	e> (<u>M</u> athS	Surface	Math

Objekty jsou uložené v knihovně s předem nastaveným pohledem a se svým parametrickým popisem. Kliknutím na obrázek vložím objekt do prostředí Rhina:

Minimum t Maximum t PointCount Function Z(t) 5+3*t Variables

Start of polyline (PersistentClose=No): Command: MathCurve Command: MathSaveObject Nastavím pohled pro uložení a vyberu objekt:

🌄 Šroubovice (42 KB) - Rhinoceros (Educational) (64 File Edit View Curve Surface Solid Mesh Command: MathCurve Command: MathSaveObject Adjust View and select MathObject to save:

Pojmenuju objekt pro uložení:

Pravý klik myší na ikonu:

Šroubovice (jeden závit)

```
0
               2*PI
               25
Function X(t) -4*cos(t)-2*sin(t)
Function Y(t) 2*cos(t)-4*sin(t)
```

EDITACE OBJEKTŮ

Rovnice zobrazených objektů můžeme později upravit nebo úplně přepsat.

Příkaz MathEditObject:

🖌 Šr	oubov	ice (jed	en závit)	(28 KB) -	Rhinoce
File	Edit	View	Curve	Surface	Solid
Loca	ation on mand	f point (I: _Can	object: cel	P	
Com	mand	: MathE	ditObje	ctl	

Pravý klik myší na ikonu:

Vybereme objekt v Rhinu, jehož rovnici chceme editovat:

Šroubovice (41 KB) - Rhinoceros (Educational) (64-bit) - [Per: File Edit View Curve Surface Solid Mesh Dimensio Select MathObject to edit: Command: MathEditObject Select MathObject to edit:

MathCurve Enter Parameters Minimum t Maximum t PointCount Function X(t) Function Y(t) Function Z(t) Variables OK Ca

VARIABLES

K parametrickému popisu objektu je možno přidat libovolnou proměnnou, která se specifikuje v řádku VARIABLES.

Zobrazí se známá tabulka pro zadávání parametrických popisů:

Ainimum t	0
Maximum t	2*PI
PointCount	25
Function X(t)	-4*cos(t)-2*sin(t)
Function Y(t)	2*cos(t)-4*sin(t)
Function Z(t)	5+31
/ariables	

		٦	
		7	
		_	
ncel	ř.		

PŘÍKLAD POUŽITÍ VARIABLES

dit Parameters		Edit Parameters
Minimum t	0	Minimum t
Maximum t	2*pi	Maximum t
PointCount	50	PointCount
Function X(t)	a*cos(t)*velikost	Function X(t)
Function Y(t)	b*sin(t)*velikost	Function Y(t)
Function Z(t)	0	Function Z(t)
Variables	a=5,b=4, velikost=1	Variables

Edit Parameters		Edit Parameters	
Minimum t	0	Minimum t	0
Maximum t	2*pi	Maximum t	2*pi
PointCount	50	PointCount	50
Function X(t)	a*cos(t)*velikost	Function X(t)	a*cos(t)*velikost
Function Y(t)	b*sin(t)*velikost	Function Y(t)	b*sin(t)*velikost
Function Z(t)	0	Function Z(t)	0
Variables	a=5,b=0.5, velikost=1	Variables	a=5,b=0.5, velikost=3
ОК	Cancel	ОК	Cancel

Elipsa $k(t) = [a\cos(t), b\sin(t)] t \in \langle 0, 2\pi \rangle$, kde *a*, *b* jsou velikosti poloos, konktretizované v řádku variables (pro proměnou lze použít jakékoliv písmeno. Pro zpřehlednění se můžou místo proměnných psát celá slova (např. velikost).

Elipsa se změněnou hodnotou vedlejší poloosy místo 4 na 0,5. *velikost* z 1 na 3.

Zvětšení elipsy změnou hodnoty proměnné

ŠROUBOVICE

Napište parametrické vyjádření dvou závitů ($t \in \langle 0, 4\pi \rangle$) šroubovice bodu A [-4,2,5]. Pravotočivý šroubový pohyb je určen osou *o*, *o* = *z*, redukovanou výškou závitu $v_0 = 3$.

VÝPOČET

Půdorysem je kružnice:

 $m(t) = \left[-4\cos(t) - 2\sin(t), 2\cos(t) - 4\sin(t), 0\right], t \in \langle 0, 2\pi \rangle$

Kružnice procházející bodem A:

 $l(t) = \left[-4\cos(t) - 2\sin(t), 2\cos(t) - 4\sin(t), 5\right], t \in \langle 0, 2\pi \rangle$

Dva závity šroubovice bodu A:

```
k(t) = \left[-4\cos(t) - 2\sin(t), 2\cos(t) - 4\sin(t), 5 + 3t\right], t \in \langle 0, 4\pi \rangle
```

MathPlugin_kružnice

MathPlugin_šroubovice

Minimum t	0	Minimum t	0
Maximum t	2*pi	Maximum t	4*pi
PointCount	25	PointCount	25
Function X(t)	$-4^{*}\cos(t)-2^{*}\sin(t)$	Function X(t)	-4*cos(t)-2*sin(t)
Function Y(t)	$2^{*}\cos(t)-4^{*}\sin(t)$	Function Y(t)	$2*\cos(t)-4*\sin(t)$
Function $Z(t)$	5	Function Z(t)	5+3*t
Variables		Variables	

KŘIVKA, TEČNA, NORMÁLOVÁ ROVINA

Je dána křivka $k(t) = [t^2 + 2t, -3t, t^3 - t], t \in \mathbb{R}$. Popište tečnu v bodě A = k(-1) a obecnou rovnici normálové roviny α v bodě A.

VÝPOČET

k(-1) = A[-1,3,0] $k'(t) = (2t+2,-3,3t^2-1)$ k'(-1) = (0, -3, 2)Tečna v bodě *A*:

 $l(t) = [-1, 3 - 3t, 2t], t \in \mathbb{R}$

Obecná rovnice normálové roviny *α*:

 $\overline{n_{\alpha}} = k'(-1)$ $\alpha: -3y + 2z + 9 = 0$

Libovolné lineárně nezávislé vektory roviny α kolmé k normálovému vektoru roviny (skalární součin je roven nule):

(0,2,3) a (1,2,3)

Parametrický popis normálové roviny α pro MathPlugin: $\alpha(u,v) = [-1+v, 3+2u+2v, 3u+3v], \ u \in \mathbb{R}, \ v \in \mathbb{R}$

MathPlugin_	křivka	MathPlugin_	_tečna
Minimum t Maximum t PointCount Function X(t) Function Y(t) Function Z(t) Variables	-10 10 25 t^2+2*t -3*t t^3-t	Minimum t Maximum t PointCount Function X(t) Function Y(t) Function Z(t) Variables	-20 20 25 -1 3-3*t 2*t

Minimum u -40 Maximum u 40 Minimum v -40 Maximum v 40 PointCount u 25 PointCount v 25 Funcion X(u,v) -1+v Function Y (u,v) 3+2*u+2*v Function Z (u,v) 3*u+3*v

Variables

Rovina α je pro větší názornost upravena v prostředí Rhina

PŘÍMKOVÉ PLOCHY

Function Z(t)

Variables

0

8

Přímková plocha je určena těmito řídícími křivkami a) kružnice k v půdorysně $\pi(x,y)$, $x^2+y^2=25$, b) přímka q procházející bodem Q [0,0,8] a rovnoběžná s osou x, c) přímka l procházející bodem P [0,0,15] a rovnoběžná s osou y. Napište parametrické vyjádření části plochy mezi řídící křivkou k a řídící přímkou q.

VÝPOČET $k(u) = [5\cos(u), 5\sin(u), 0], u \in \langle 0, 2\pi \rangle$ P $q(t) = [t, 0, 8], t \in R$ MathPlugin_plocha $l(s) = [0, s, 15], s \in R$ Minimum u 0 $K = k(u_0) = [5\cos(u_0), 5\sin(u_0), 0]$ 2*pi Maximum u Minimum v 0 $\alpha(l,K)$ 1 Maximum v $\vec{l} = (0, 1, 0)$ 25 PointCount u PointCount v 25 $\overrightarrow{PK} = (5\cos(u_0), 5\sin(u_0), -15) \sim (\cos(u_0), \sin(u_0), -3)$ $(5^{*}(\cos(u)) - ((8/3)^{*}(\cos(u))^{*}v))$ Funcion X(u,v) $\vec{l} \times \vec{KP} = (3, 0, \cos t_0)$ (5*sin(u)-5*(sin(u)*v))Function Y (u,v) (8*v) Function Z (u,v) $\alpha: 3x + \cos(u_0)z - 15\cos(u_0) = 0$ Variables $\alpha \cap q = L = \left[\frac{7}{3}\cos(u_0), 0, 8\right]$ $\overrightarrow{KL} = L - K = \left(-\frac{8}{3}\cos(u_0), -5\sin(u_0), 8\right)$ $p(u,v) = \left\lceil 5\cos(u) - \frac{8}{3}v\cos(u), 5\sin(u) - 5v\sin(u), 8v \right\rceil u \in \langle 0, 2\pi \rangle, v \in \langle 0, 1 \rangle$ přímka q MathPlugin_kružnice přímka *l* Minimum t 0 -10 -10 Maximum t 2*pi 10 10 PointCount 25 5 5 Function X(t) $5^*\cos(t)$ t 0 Function Y(t) 5*sin(t) 0 t

15

Plocha se nazývá Štramberská trúba

KAMIL HILBERT - ZASTŘEŠENÍ ŠTRAMBERSKÉ TRÚBY

Obr. 7

doplnění plochy tzv. náběhy

Přímková plocha je určena těmito řídícími útvary a) křivka k, která je grafem funkce z=sin(x) v nárysně v(x,z), b) přímka l rovnoběžná s x a procházející bodem A[0,10,0] c) řídící rovina φ : x = 0. Napište parametrický popis dané přímkové plochy.

MathPlugin_plocha

VÝPOČET

Minimum u $k(u) = [u, 0, \sin(u)], u \in \langle -4\pi, 4\pi \rangle$ Maximum u $l(s) = \lceil s, 10, 0 \rceil, s \in R$ Minimum v Maximum v $K = k(u_0) = \left[u_0, 0, \sin(u_0)\right]$ PointCount u PointCount v $\alpha \| \phi \wedge K \in \alpha$ Funcion X(u,v) $\alpha: x - u_0 = 0$ Function Y (u,v) Function Z (u,v) $\alpha \cap l = L$ Variables $L[u_0, 10, 0]$ $\overrightarrow{KL} = L - K = (0, 10, -\sin(u_0))$ $p(u,v) = [u, 10v, (1-v)\sin(u)], u \in \langle -4\pi, 4\pi \rangle, v \in \langle 0, 2 \rangle$

přímka *l*

MathPlugin_křivka *k*

-4*pi	-20
4*pi	20
30	30
t	t
0	10
sin(t)	0
	U
	-4*pi 4*pi 30 t 0 sin(t)

rovina φ

Minimum u	-10
Maximum u	10
Minimum v	-10
Maximum v	10
PointCount u	25
PointCount v	25
Funcion X(u,v)	0
Function Y (u,v)	V
Function Z (u,v)	u
Variables	

Plocha je vlnkový konoid

ANTONIO GAUDÍ - ŠKOLA V BARCELONĚ

Obr. 8

Obr. 9

Obr. 10

TRANSLAČNÍ PLOCHY

Translační plochy vznikají posunutím (translací) křivky *k* po křivce *l* nebo translací křivky *l* po křivce *k*. Na ploše jsou dva systémy křivek: 1. Křivky shodné s křivkou *k* v rovinách rovnoběžných s rovinou křivky *k*.

2. Křivky shodné s křivkou *l* v rovinách rovnoběžných s rovinou křivky *l*.

Translační plocha je určena křivkami *k* a *I* se společným bodem *V*[0,0,5]. Křivka *k* je kružnice v bokorysně μ (y, z). Bod *O*[0,0,0] je střed kružnice, kružnice prochází bodem *V*. Křivka *I* je část paraboly v nárysně ν (x,z), bod *V* je vrchol paraboly, osa paraboly je osa *z* a krajní body zvolené části paraboly jsou body *P*[6,0,11] a *Q*[-6,0,11]. Napište parametrické vyjádření této plochy a vymodelujte ji v Rhinu.

VÝPOČET

$$k(u) = [0,5\cos(u),5\sin(u)], u \in \langle 0,2\pi \rangle$$

$$l(v) = \left[v,0,\frac{v^2}{6}+5\right] v \in \langle -6,6 \rangle$$

$$K = k(u_0) = \left[0,5\cos(u_0),5\sin(u_0)\right]$$

$$V \to K \quad \text{bod V se posune do bodu K}$$

$$vektor K - V = \left(0,5\cos(u_0),5\sin(u_0)-5\right)$$

$$posunutá křivka l:$$

$$q(v) = l(v) + \left(0,5\cos(u_0),5\sin(u_0)-5\right)$$

$$q(v) = \left[v, 5\cos(u_0), \frac{v^2}{6} + 5\sin(u_0)\right]$$

plocha:

$$p(u,v) = \left[v, 5\cos(u), \frac{v^2}{6} + 5\sin(u)\right], \ u \in \langle 0, 2\pi \rangle, v \in \langle -6, 6 \rangle$$

MathPlugin_plocha

Minimum u Maximum u Minimum v Maximum v PointCount u PointCount v Funcion X(u,v) Function Y (u,v) Function Z (u,v) Variables	0 2*pi -6 6 25 25 v 5*cos(u (v^2)/6-	ı) +5*sin(u)	
MathPlugin_	křivka <i>k</i>	křivka I	
Minimum t Maximum t PointCount Function X(t) Function Y(t) Function Z(t) Variables	0 2*pi 25 0 5*cos(t) 5*sin(t)	-6 6 2 25 t 0 (t^2)/6+5	

Seznam vyobrazení:

Obr. 7: Hromadová, Jana. Deskriptivní geometrie na MFF UK [online]. Vystaveno 1.9.2011 [cit. 2013-3-11]. Dostupné z: http://www.karlin.mff.cuni.cz/~jole/deskriptiva/fotky/Obr6.jpg

Obr. 8: Song, Miss. Miss Song's Biology Blog [online]. Vystaveno 15.1.2010 [cit. 2013-3-15] Dostupné z: http://media.lonelyplanet.com/lpimg/24694/24694-95/preview.jpg

Obr.9, Obr.10: Seidler, David. Autorská fotografie.

Použité programy:

Rhinoceros 5 V-Ray 1.5 for Rhino Adobe Acrobat 3D Version 8 Adobe InDesign CS6

Užitečné odkazy:

http://www.rhino3.de/ http://help.adobe.com/cs_CZ/acrobat/using/WS58a04a822e3e50102bd615109794195ff-7bfd.w.html http://youtu.be/e42lkX4ph_g